Eyes O' Uni.

This blog contains everything that I supposed to be interesting and unique. Including hobbies. So there'll always chance for two or more articles which are really contrast to each other. In short, this blog doesn't have speciality. Sound selfish? Don't worry, I'm with pleasure gonna let everyone gimme advices and critics.

Rabu, 29 April 2009

Misteri Bilangan Lubang Hitam

Dalam astronomi dan fisika, kita mengenal adanya suatu fenomena alam yang sangat menarik yaitu lubang hitam (black hole). Lubang hitam adalah suatu entitas yang memiliki medan gravitasi yang sangat kuat sehingga setiap benda yang telah jatuh di wilayah horizon peristiwa (daerah di sekitar inti lubang hitam), tidak akan bisa kabur lagi. Bahkan radiasi elektromagnetik seperti cahaya pun tidak dapat melarikan diri, akibatnya lubang hitam menjadi "tidak kelihatan". 

Ternyata, dalam matematika juga ada fenomena unik yang mirip dengan fenomena lubang hitam yaitu bilangan lubang hitam. Bagaimana sebenarnya bilangan lubang hitam itu? Mari kita bermain-main sebentar dengan angka. 

Coba pilih sesuka hati Anda sebuah bilangan asli (bilangan mulai dari 1 sampai tak hingga). Sebagai contoh, katakanlah 141.985. Kemudian hitunglah jumlah digit genap, digit ganjil, dan total digit bilangan tersebut. Dalam kasus ini, kita dapatkan 2 (dua buah digit genap), 4 (empat buah digit ganjil), dan 6 (enam adalah jumlah total digit). Lalu gunakan digit-digit ini (2, 4, dan 6) untuk membentuk bilangan berikutnya, yaitu 246. 

Ulangi hitung jumlah digit genap, digit ganjil, dan total digit pada bilangan 246 ini. Kita dapatkan 3 (digit genap), 0 (digit ganjil), dan 3 (jumlah total digit), sehingga kita peroleh 303. Ulangi lagi hitung jumlah digit genap, ganjil, dan total digit pada bilangan 303. (Catatan: 0 adalah bilangan genap). Kita dapatkan 1, 2, 3 yang dapat dituliskan 123. 

Jika kita mengulangi langkah di atas terhadap bilangan 123, kita akan dapatkan 123 lagi. Dengan demikian, bilangan 123 melalui proses ini adalah lubang hitam bagi seluruh bilangan lainnya. Semua bilangan di alam semesta akan ditarik menjadi bilangan 123 melalui proses ini, tak satu pun yang akan lolos. 

Tapi benarkah semua bilangan akan menjadi 123? Sekarang mari kita coba suatu bilangan yang bernilai sangat besar, sebagai contoh katakanlah 122333444455555666666777777788888888999999999. Jumlah digit genap, ganjil, dan total adalah 20, 25, dan 45. Jadi, bilangan berikutnya adalah 202.545. Lakukan lagi iterasi (pengulangan), kita peroleh 4, 2, dan 6; jadi sekarang kita peroleh 426. Iterasi sekali lagi terhadap 426 akan menghasilkan 303 dan iterasi terakhir dari 303 akan diperoleh 123. Sampai pada titik ini, iterasi berapa kali pun terhadap 123 akan tetap diperoleh 123 lagi. Dengan demikian, 123 adalah titik absolut sang lubang hitam dalam dunia bilangan. 

Namun, apakah mungkin saja ada suatu bilangan, terselip di antara rimba raya alam semesta bilangan yang jumlahnya tak terhingga ini, yang dapat lolos dari jeratan maut sang bilangan lubang hitam, sang 123 yang misterius ini?


Bawang putih (Allium sativum) adalah herba semusim berumpun yang mempunyai ketinggian sekitar 60 cm. Tanaman ini banyak ditanam di ladang-ladang di daerah pegunungan yang cukup mendapat sinar matahari. Batangnya batang semu dan berwarna hijau. Bagian bawahnya bersiung-siung, bergabung menjadi umbi besar berwarna putih. Bawang putih dapat digunakan untuk pengobatan alternatif antara lain untuk mengobati flu dan batuk, kolesterol, kehamilan dan penyembuh wasir.

By Michael A. Nielsen

When Robert Hooke discovered his law of elasticity in 1676, he didn't publish it in the ordinary way. Instead, he published it as an anagram: "ceiiinosssttuv." He revealed this two years later as the Latin ut tensio, sic vis, meaning "as the extension, so the force." This ensured that if someone else made the same discovery, Hooke could reveal the anagram and claim priority, thus buying time in which he alone could build upon the discovery.

Many great scientists of the age, including Leonardo, Galileo and Huygens, used anagrams or ciphers for similar purposes. The Newton-Leibniz controversy over who invented calculus occurred because Newton claimed to have invented calculus in the 1660s and 1670s, but didn't publish until 1693. In the meantime, Leibniz developed and published his own version of calculus.
Such secrecy was natural in a society in which there was often little personal gain in sharing discoveries. This secrecy faded because the great scientific advances in the time of Hooke and Newton motivated wealthy patrons such as the government to begin subsidizing science as a profession. Because the public benefit delivered by scientific discovery was strongest if discoveries were shared, the result was a scientific culture that to this day rewards the sharing of discoveries. Today, when a scientist applies for a job, the most important part of the application is often their published scientific papers. 

The adoption and growth of the scientific journal system has created a body of shared knowledge for our civilization, a collective long-term memory that is the basis for much of human progress. This system has changed surprisingly little in the last 300 years. The Internet offers us the first major opportunity to improve this collective long-term memory, and to create a collective short-term working memory, a conversational commons for the rapid collaborative development of ideas. 
One way of viewing online tools is as a way of expanding the range of scientific knowledge that can be shared with the world. A successful example is the physics preprint arXiv, which lets physicists share preprints of their papers without the months-long delay typical of a conventional journal. More radically, the internet can also change the process and scale of creative collaboration, using social software such as wikis, online forums, and similar tools. I believe that such tools and their descendants will change scientific collaboration more over the next 20 years than it has changed in the past 300 years. Yet, with the exception of email, scientists currently appear puzzlingly slow to adopt many online tools. This is a consequence of some major barriers deeply embedded within the culture of science.

Requirements: possessing the magick reflect and thundaga
First thing first, set your gambit as following:
- Ally: any reflect
- Ally: status = reflect thundaga
Turn any magic healing gambits off.
If you have known the way to face Fafnir, then just skip to the next paragraph. After you have been well prepared, head to the Mt Bur-Omisace to start the hunt, talk to Ieeha in the second area. You need to have the Paramina Rift in heavy snow, in the Silverflow End for exact. It seems to be easier to make Paramina heavy snowed if you enter it from the Golmore Jungle. So I suggest that you do that. Make your way to the Silverflow End, the left one on the map screen.
Now the tactic begins. Cast out the magick faith (optional) followed with reflect. During the way to face Fafnir, you have to turn the gambits I mentioned above off. Just approach Fafnir when you begin to see it, keep your previous gambit turned off before you are really close to Fafnir. But WAIT, don’t stay too close to this wyrm. Try to stand on the spot which equals the maximum distance where your long range attack can reach your foe, and it’s the time for the previous gambit. If you do well, that Fafnir won’t approach your party but it gonna keep its position and begin to strike you with long range attack by using the magick shock, sleepga or silencega. But the shock is the most dominant. Remember, your party have already been supported with reflect so there is nothing you need to worry about. The damage of Fafnir’s shock can reach around 7000, so this case is the main hell of this hunt. You can be killed in one blast if you go without any tactics. Fortunately if this shock attacks Fafnir itself the number can go up to about 8000.
You have reflect on your party and have set them to cast thundaga to themselves, so your thundaga will be reflected to Fafnir three times per ally (I think it’s the most common way which has been used by many gamers to multiply attack). It means three allies will crush Fafnir nine times plus its own shock. Same as another ice type enemies, the weakness of Fafnir is thunder. The damage of Fafnir’s shock will increase as its HPs become critical, if you add faith on it the damage can touch 9999 striking itself. When I took this hunt, my party level average was about 51, and my thundaga hurted about 4000 with the full activated of any status increasing licenses. It resulted in one turn I could damage Fafnir at the number of 9 x 4000 + 8000 = 44000. It took me 8 minutes to finish this fight within that level.