Eyes O' Uni.

This blog contains everything that I supposed to be interesting and unique. Including hobbies. So there'll always chance for two or more articles which are really contrast to each other. In short, this blog doesn't have speciality. Sound selfish? Don't worry, I'm with pleasure gonna let everyone gimme advices and critics.

By Michael A. Nielsen

When Robert Hooke discovered his law of elasticity in 1676, he didn't publish it in the ordinary way. Instead, he published it as an anagram: "ceiiinosssttuv." He revealed this two years later as the Latin ut tensio, sic vis, meaning "as the extension, so the force." This ensured that if someone else made the same discovery, Hooke could reveal the anagram and claim priority, thus buying time in which he alone could build upon the discovery.

Many great scientists of the age, including Leonardo, Galileo and Huygens, used anagrams or ciphers for similar purposes. The Newton-Leibniz controversy over who invented calculus occurred because Newton claimed to have invented calculus in the 1660s and 1670s, but didn't publish until 1693. In the meantime, Leibniz developed and published his own version of calculus.
Such secrecy was natural in a society in which there was often little personal gain in sharing discoveries. This secrecy faded because the great scientific advances in the time of Hooke and Newton motivated wealthy patrons such as the government to begin subsidizing science as a profession. Because the public benefit delivered by scientific discovery was strongest if discoveries were shared, the result was a scientific culture that to this day rewards the sharing of discoveries. Today, when a scientist applies for a job, the most important part of the application is often their published scientific papers. 

The adoption and growth of the scientific journal system has created a body of shared knowledge for our civilization, a collective long-term memory that is the basis for much of human progress. This system has changed surprisingly little in the last 300 years. The Internet offers us the first major opportunity to improve this collective long-term memory, and to create a collective short-term working memory, a conversational commons for the rapid collaborative development of ideas. 
One way of viewing online tools is as a way of expanding the range of scientific knowledge that can be shared with the world. A successful example is the physics preprint arXiv, which lets physicists share preprints of their papers without the months-long delay typical of a conventional journal. More radically, the internet can also change the process and scale of creative collaboration, using social software such as wikis, online forums, and similar tools. I believe that such tools and their descendants will change scientific collaboration more over the next 20 years than it has changed in the past 300 years. Yet, with the exception of email, scientists currently appear puzzlingly slow to adopt many online tools. This is a consequence of some major barriers deeply embedded within the culture of science.

0 komentar:

Posting Komentar